Observer Agreement of Lower Limb Venous Reflux Assessed by Duplex Ultrasound Scanning using Manual and Pneumatic Cuff Compression in Patients with Chronic Venous Disease and Controls

R. Broholm, S. Kreiner, N. Bækgaard, L. Panduro Jensen, H. Sillesen

Vascular Clinic, Department of Vascular Surgery, Rigshospitalet and Gentofte, University of Copenhagen, Copenhagen, Denmark
Department of Biostatistics, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen, Denmark

Submitted 28 September 2010; accepted 4 January 2011
Available online 17 February 2011

Abstract Objectives: The study aimed to evaluate observer agreement between two experienced ultrasound operators examining deep venous reflux assessed by duplex ultrasound (DU) using either manual or pneumatic cuff compression. In addition, the two methods were compared with each other with regard to immediate "eyeballing" and direct measurements of reflux time from Doppler flow curves.

Design: This was a case control study.

Material and Methods: Cases were found among patients admitted to our department with deep venous thrombosis of the iliac, femoral or popliteal veins during the period 1999–2006. Controls were departmental staff. DU was used to assess valve function in the common femoral, femoral and popliteal veins in the standing position using manual and pneumatic cuff compression. The investigators were blinded to the other's observations. Observer agreement was assessed using the Rasch model for binary items.

Results: Twenty patients and 20 controls participated in the study and were analysed by the Rasch model. Quantitative measurement was found to be more reliable than "eyeballing", and cuff compression was more reproducible in identifying reflux than manual compression. We found that assessment by manual measurement by one investigator functioned at a lower level of expertise than for the other investigator.

Conclusions: Cuff measurements were more accurate in diagnosing deep venous reflux than manual measurements, and measurement was more accurate than "eyeballing". The fact that
Over the past three to four decades, duplex ultrasound has developed into an invaluable diagnostic tool in vascular departments for assessment of the arterial and venous circulations. It has become the principal tool in examining patients with chronic venous disease, and it is useful for investigation of venous reflux, both in the superficial and deep venous system. Several studies have led to the definition of reflux as a retrograde flow in the reverse direction to physiological flow lasting more than 0.5 s, and others have proposed a cut-off value of 1.0 s. Venous reflux can be elicited either after release of manual or pneumatic cuff compression with the patient standing or by having the patient perform a Valsalva manoeuvre in the supine position. Pneumatic cuff compression has been used to assess quantitative measurements of venous reflux. Despite the fact that duplex investigation is operator dependent, only a few studies have evaluated the reproducibility of the duplex measurements, and inter-observer variability in reflux assessment is not always perfect. A recent study compared a new pneumatic cuff inflation/deflation device with manual compression in the diagnosis of venous reflux.

The aim of this study was to evaluate the observer agreement between two experienced ultrasound operators examining deep venous reflux assessed by duplex ultrasound, using either manual or pneumatic cuff compression in the standing position. In addition, the two methods were compared with each other with regard to immediate “eyeballing” and direct measurements of reflux time from ultrasound Doppler flow curves.

Materials and methods

Between April 2008 and July 2009, deep venous valve function was studied in 40 individuals: 20 patients with a previous history of deep venous thrombosis (DVT) treated with warfarin and 20 healthy persons with no prior history of venous disease. Patients were selected among a group of patients admitted to our department of vascular surgery with DVT of the iliac, femoral (FV) or popliteal (PV) veins in the years 1999–2006.

We examined the common femoral vein (CFV), the FV a few centimetres below the junction of the profunda femoris vein and the femoral vein and the PV. Both lower limbs were assessed. All volunteers were categorised according to the clinical classification (C) for reporting standards in venous disease, CEAP (Clinical, etiologic, anatomic and pathophysiologic data). Further characteristics, such as age and gender, were also recorded (Table 1).

The observer agreement was obtained by comparing ultrasound measurements performed by two experienced ultrasound operators, blinded for each other’s results, in the 20 healthy persons and in the 20 individuals with a previous history of DVT. All persons were examined with both manual calf compression and with pneumatic calf cuff compression by the two examiners (RB and NB) (Fig. 1).

The study was approved by the national ethics committee (journal number H-D-2007-0120), and all participants provided written informed consent for their inclusion in the study.

Duplex ultrasound

A colour duplex ultrasound scanner (Phillips iU22, Bothell, Washington, USA), with a 9–3 MHz linear array transducer, was used in the examination of venous reflux in the CFV, in the FV and in the PV in all cases.

All participants were scanned in a standing position, holding on to a support and with their weight on the leg contralateral to that being examined. The first examination was performed with distal manual compression of the calf followed by a sudden release to elicit retrograde flow. In the second examination, a standardised pneumatic cuff (Venopulse, STR Teknik, Norway) with a cuff size of 17 cm, was placed around the calf and then rapidly inflated followed by deflation. This procedure was managed with a foot switch (Fig. 2). Again, the volunteers were examined in the standing position with the weight on the contralateral leg. The cuff was inflated to 150 mmHg and inflation was automatically held for 3 s, followed by rapid deflation. A pressure of 150 mmHg was applied because this is sufficient to overcome the hydrostatic and gravitational pressures and to produce upward blood flow.

Clinical examination of the participants was first performed by one investigator (RB), both with manual and cuff compression; and after data had been saved on the hard drive, they were deleted from the ultrasound system before the second investigator entered the room. Then, the second investigator (NB) performed his examination blinded to the outcome of the first investigator (RB).

All data were recorded digitally onto the hard drive of the ultrasound system and later transferred onto digital video discs (DVDs). In addition, black-and-white pictures of frozen Doppler spectra recorded during compression and after release were printed. At every examination, the investigator made an immediate estimate (“eyeballing”) of whether reflux was present or not and recorded his findings on the case report form (CRF). In addition, every Doppler curve was analysed more thoroughly after the clinical examination, measuring the exact reflux time (Fig. 1). This was later compared to the “eyeballing” result. The direct measurements were made by one investigator (RB), using the software Sante DICOM Editor version 3.0.4.

In addition to the presence or absence of reflux judged by immediate “eyeballing”, the reflux time (measured directly from the stored Doppler spectra) and the diameter of the vein were recorded in each venous segment.

Reflux was considered to be present if the duration of retrograde flow was above 0.5 s in the FV and in the PV, as proposed by van Bemmelen, and a reflux time above 1.0 s in the CFV was considered pathological.
Statistical analysis

Power calculations were performed to determine the number of participants, based on the assumptions that two experienced investigators would agree in the diagnosis of venous reflux in 90% of cases, and that reflux would be detected in 20–30% of cases. Type I error (alpha) is 0.05, and type II error (beta) is 0.10. If we assumed that reflux would be present in 30% of cases, 15 participants would be required. However, if venous reflux was present in only 10% of cases, 32 participants would be required. Therefore, a total of 40 volunteers was included in the study.

Table 1 Characteristics of participants.

<table>
<thead>
<tr>
<th></th>
<th>Patients (20) (40 limbs)</th>
<th>Controls (20) (40 limbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median)</td>
<td>32 years (range: 24–63)</td>
<td>32 years (range: 21–55)</td>
</tr>
<tr>
<td>Female:Male ratio</td>
<td>17:3</td>
<td>18:2</td>
</tr>
<tr>
<td>Previous DVT (no. limbs)</td>
<td>20 (23)</td>
<td>0</td>
</tr>
<tr>
<td>CEAP</td>
<td>19 C3, 1 C5</td>
<td>19 C0, 1 C3</td>
</tr>
<tr>
<td>Calf circumference (cm, median)</td>
<td>40.5 (range: 30.5–46.5)</td>
<td>36.5 (range: 32–47)</td>
</tr>
<tr>
<td>Vein diameter, mean (cm)</td>
<td>CFV 1.36</td>
<td>CFV 1.47</td>
</tr>
<tr>
<td></td>
<td>FV 1.06</td>
<td>FV 1.34</td>
</tr>
<tr>
<td></td>
<td>PV 0.88</td>
<td>PV 0.91</td>
</tr>
</tbody>
</table>

We chose not to use Cohen’s kappa coefficient (κ) as a measure of observer agreement, as the value of κ is restricted to the specific cases and controls that have been examined. Instead, observer agreement between the two experienced ultrasound operators was analysed by Rasch’s model for binary items.13 Westergaard et al. provide two applications of Rasch models for observer agreement.13 The model describes each observer’s evaluation of a specific case of reflux assessment, with the probability given by a logistic regression model. Here, \(\theta_i \) can be regarded as a random patient effect containing information both on the presence of reflux and on the difficulty of the case. Reflux is

Figure 1 Diagram illustrating the examination pathway.
If a_j is positive and not present if a_j is negative. The closer a_j is to zero, the more difficult the case. Variation among the observers is represented by the observer parameter a_j, representing observer bias. Bias leans towards reflux if $a_j > 0$ and towards no reflux if $a_j < 0$. There is no observer bias if $a_j = 0$ for all observers.

The model is given by

$$p_{ij} = \exp(\theta_i + a_j) / (1 + \exp(\theta_i + a_j))$$

The Rasch model assumes that the cases have the same effect on observers. However, to distinguish between expert and novice, the degree of observer expertise (β_j) can be added to the model

$$p_{ij} = \exp(\beta_j (\theta_i + a_j)) / (1 + \exp(\beta_j (\theta_i + a_j)))$$

If $\beta_j = 0$, the level of expertise is at its lowest, as rating here is equivalent to the flipping of a coin.

The initial analysis of observations consists of a test of the Rasch model followed by a test that all bias parameters are equal to zero. Conditional likelihood ratio tests were used primarily to test the fit of the Rasch model and then to test that observations were unbiased. 17

Results

Among the 20 patients with a history of DVT, three patients had bilateral thrombosis. Patients included 17 women and 3 men with a median age of 32 years (range, 24–63 years), and 19 was categorised as CEAP C3 and one patient as C5. Volunteers were department staff and included 18 women and 2 men, with a median age of 32 years (range, 21–55 years). One control was categorised as C3, and all other controls had no signs or symptoms of chronic venous disease, and were therefore categorised as C0. Further details can be seen in Table 1.

In every volunteer, three venous segments were examined in both lower limbs (CFV, FV and PV), with two different methods (manual and pneumatic cuff); and with both exact measuring and "eyeballing", several parameters were obtained for each of the two investigators; 'manual measure', 'manual eyeballing', 'cuff measure' and 'cuff eyeballing', corresponding to 48 parameters for each patient and a total of 1920 data on whether reflux was present or not. The vein segment was categorised as normal or with reflux according to the cut-off values mentioned above. Values of reflux time above 2.5 s were classified as indefinitely long and were not recorded more accurately.

The conditional likelihood ratio tests provided marginal evidence against the Rasch model ($p = 0.023$), corresponding to good fit of the model. The hypothesis that bias parameters were equal to zero was rejected ($p = 0.006$), but the hypothesis that the investigators were not biased relative to each other was accepted ($p = 0.85$). The bias that was found was therefore related to the different methods. Table 2 shows the estimates of the bias parameters together with odds ratio coefficients describing observer bias relative to cuff measurement.

Two methods may be used for evaluating the different assessments of reflux. The so-called outfit statistic is one of those which are often used in health research, and the more powerful fit statistic is Loevinger’s H coefficient defined in non-parametric item response theory. 18 Both of these points at manual measurement by investigator RB as an assessment where the level of expertise is less than the level of expertise for the other assessments (Outfit = 2.05, $p = 0.002$; $H = 0.81$, $p = 0.002$).

Results are presented in Fig. 3. With the cuff method used as the reference and compared with this, the figure illustrates that it is more reproducible to identify reflux by cuff measurement (black line) than by manual measurement (blue line), although this did not reach statistical significance ($\chi^2 = 3.3$, df = 1 and $p = 0.069$). It was more reproducible to identify reflux by cuff measurement than by cuff eyeballing (black vs. purple line) ($\chi^2 = 4.1$, df = 1 and $p = 0.042$). Reflux assessment using manual measurement was more reproducible than by manual eyeballing (blue vs. green line) ($\chi^2 = 6.5$, df = 1, $p = 0.011$). Furthermore, cuff eyeballing was more reproducible than manual eyeballing (purple vs. green line) ($\chi^2 = 5.5$, df = 1, $p = 0.019$). Finally, the figure illustrates that assessment by manual measurement by one investigator (RB) may function at a lower level of expertise (black vs. purple line) ($\chi^2 = 2.05$, df = 1, and $p = 0.19$).
in 15% of cases, and when two cuff measurements agreed on “no reflux”, the manual measurement would not agree in 2.4% of these cases.

Discussion

Our results suggested that it was more accurate to identify reflux by measuring than by “eyeballing” the outcome of duplex ultrasonography. This could be explained by the fact that “eyeballing” classified some veins as having no reflux when measurement revealed that reflux was present, according to the definitions we used. The reason for this finding is not surprising, as reflux time judged by immediate “eyeballing” on screen is more likely to be underestimated with a spectral Doppler curve of normal appearance, even though reflux time is above the given definitions. The study by van Bemmelen et al. from 1989 analysed the duration of reflux in the deep veins of healthy volunteers and found that the median duration of reflux in the PV was 0.19 s, and

<table>
<thead>
<tr>
<th>Compression</th>
<th>Assessment</th>
<th>Odds ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>Measurement</td>
<td>0.48</td>
</tr>
<tr>
<td>Manual</td>
<td>Eyeballing</td>
<td>0.16</td>
</tr>
<tr>
<td>Cuff</td>
<td>Measurement</td>
<td>Reference</td>
</tr>
<tr>
<td>Cuff</td>
<td>Eyeballing</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Table 2 Estimates of bias parameters and odds ratios describing observer bias relative to cuff measurement. The bias parameters can be interpreted in terms of odds ratios. Measured by the odds ratio, the chance that reflux is indicated by Manual Measuring is for instance only 100*exp (0.112 – 0.847) = 48% of the chance that reflux is indicated by Cuff Measuring. Fit of the Rasch Model: p = 0.023.

Figure 3 Item characteristic curves of the Rasch Model. Reflux is present if θ_i is positive and not present if θ_i is negative. The closer θ_i is to zero, the more difficult the case. At one end of the curve are the easy cases with reflux and at the other end of the curve are the easy cases without reflux. In the middle area (θ around zero) the curves differ, corresponding to the difficult cases where it has been difficult to identify whether reflux is present or not and where the two investigators disagree. Cuff measurement (black line) is more reproducible in identifying reflux than manual measurement (blue line) and cuff eyeballing (purple line). Manual measurement (blue line) is more reproducible than manual eyeballing (green line) in assessment of reflux. The red line illustrates analysis of manual compression for investigator RB. The curve has a less steep slope (degree of observer expertise, β_j) meaning that manual compression functions at a lower level of expertise (“novice”) for investigator RB.
that 95% of the values in the PV was less than 0.66 s.3
Furthermore, our results showed that it was more repro-
ducible to identify reflux by cuff compression than by
manual compression, and that manual measurements func-
tioned at a lower level of expertise for one investigator
(RB). The reason for this finding may have a good expla-
nation because of the fact that the female investigator, RB,
did not have the same amount of physical strength in her
hands compared with the male investigator, NB. Therefore,
it may have been more difficult for investigator RB to
compress the veins sufficiently with her hands when
investigating for venous reflux. Another factor that may
have affected the results is the calf circumference. It may
be assumed that a large calf circumference makes it more
difficult to achieve consistency, and may also explain why
assessment by manual compression by investigator RB
functioned at a lower level of expertise. This is one factor
that is believed to have caused lack of agreement in the
peak reflux velocity measured with manual and cuff
compression in the study by Yamaki and colleagues.19

In the literature, manual and cuff compression have
been compared with varying results. Yamaki and colleagues
found a similar duration of reflux whether elicited by
manual compression or by the cuff deflation method.19
Araki et al. studied reflux in the PV with both manual and
pneumatic cuff compression in the standing and supine
position. Overall, they reported no significant difference
between the pneumatic cuff and manual compression
either in normal limbs or in limbs with chronic venous
insufficiency.20 However, their findings demonstrated that
manual compression did require diligent effort to achieve
consistency (36% sensitivity with manual compression at the
thigh). It was therefore concluded that the pneumatic cuff
probably provided better test standardisation than manual
compression, but with greater technical experience, ma-
nual compression was considered as an alternative.20
Similarly, van Bemmelen et al. concluded that the dura-
tion of popliteal reflux with manual compression in the
supine position was so variable that it could not be evalu-
ated.3 In the study by Markel and colleagues, the cuff
method was found to be superior to a Valsalva manoeuvre
and limb compression, as 20–25% of cases with reflux in the
CFV or PV detected by the cuff method remained unde-
tected by using the supine methods.21 This corresponds
well with our results where cuff compression is more
accurate in identifying reflux compared with the manual
method, as 15% of cases with reflux identified by cuff
measurements was not identified with manual measure-
ments. However, all our examinations have been performed
in the standing and not in the supine position.

Kakkos and co-workers recently showed that pneumatic
cuff and manual compression were equally effective in
inducing and diagnosing reflux. Good agreement between
the two methods was found with a Cohen’s kappa of 0.68.10
However, it must be noted that all reflux examinations
were performed with the patient lying in a reverse Tren-
delenburg position. In case of no reflux, the test was
repeated in the standing position. The authors found that
manual compression required the assistance of an addi-
tional experienced person, who could squeeze the leg
adequately to achieve substantial forward flow. Because of
the large volume of patients being examined in the vascular
laboratories every day, the pneumatic compression method
was expected to reduce the total costs.10

The limitations of our study include difference between
investigators in the physical ability to perform sufficient
compression of the calf muscle as mentioned earlier. In addi-
tion, not all veins were re-canalised completely, and residual
thrombus and wall thickening may have influenced the reflux
measurements. However, this was not examined any further.
There is no “gold standard” in reflux assessment, but, based on
the assumption that it is more precise to investigate venous
valve function using a method that can be standardised,
the cuff method was used as the reference in our study.

In conclusion, we found that reflux assessed by cuff
compression was more reproducible than when assessed by
manual compression. Immediate “eyeballing” did not reveal
reflux in as many cases as exact measurements of the Doppler
flow curve did. The fact that assessment by manual
compression by one investigator functioned at a lower level
of expertise suggests that cuff measurement might be the
optimal assessment method, especially in difficult cases.

Conflict of interest

The authors have no conflict of interest.

Funding

None.

Acknowledgements

The authors thank Ulla Walseth and John Leth, vascular
technicians at the Department of Vascular Surgery, Gen-
tofte Hospital, for assisting with ultrasound examinations.

References

1 Cavezzi A, Labropoulos N, Partsch H, Ricci S, Caggiati A, Myers K,
et al. Duplex ultrasound investigation of the veins in chronic
venous disease of the lower limbs—UIP consensus document.
2 Coleridge-Smith P, Labropoulos N, Partsch H, Myers K, Nicolaides A, Cavezzi A. Duplex ultrasound investigation of the
veins in chronic venous disease of the lower limbs—UIP
consensus document. Part I. Basic principles. Eur J Vasc Endo-
3 van Bemmelen PS, Bedford G, Beach K, Strandness DE. Quan-
titative segmental evaluation of venous valvular reflux with
4 Sarin S, Sommerville K, Farrah J, Scurr JH, Coleridge Smith PD.
Duplex ultrasonography for assessment of venous valvular
5 Labropoulos N, Tiongson J, Pryor L, Tassiopoulo AK, Kang SS,
Ashraf MM, et al. Definition of venous reflux in lower-extremity
6 van Bemmelen PS, Mattos MA, Hodgson KJ, Barkmeier LD,
Ramsey DE, Faught WE, et al. Does air plethysmography
 correlate with duplex scanning in patients with chronic venous
7 van Bemmelen PS, Beach K, Bedford G, Strandness Jr DE. The
mechanism of venous valve closure. Its relationship to the